
1

Project 2 – Programming Project

CS3330 Data Structures and Algorithms

Term 5 2017: May 29 – July 30
Dr. Jack Davault

Overview

This assignment consists of implementing an application using the techniques learned in the first half of the course.

Examples on how to use file operations, the standard template library, and other features are provided in the Sample

Programs (for Project 2) section located the Learning Modules area in Blackboard. These examples provide a
starting point for your implementation. Everything you need to do this project is provided in these sample programs.

Your program must compile and you must provide all of the source code files so that I can also compile and run
your program (i.e. provide me with all files ending in .h and .cpp that are necessary to compile your program). You

are responsible for submitting your program correctly. Please ask if you have questions.

You may use any resources, books, or notes. Apart from your textbook and provided examples, you must

mention all resources that you use as comments next to the applicable lines of code or the appropriate
functions within your source code or within the main comment at the top of your source code file. You may

also work with only one other classmate on this assignment if you want to, but you must mention all of your names

as comments in the applicable sections of the source code showing where you collaborated. If you collaborate on
the entire project, no problem, both of your names must be in the comment at the top of all of the source code files,

and only one person needs to submit the assignment. I do highly recommend that you work with one other

person on this project, and begin working on this assignment as soon as possible. Don’t wait until the last
minute to begin working on this assignment. Consider posting a message in the Student Lounge or sending out

an email to your fellow classmates asking if anyone is willing to partner with you on this project. Two person teams
only.

Note: Again, you may use outside resources or books, but you are not to post questions, comments, or source code
related to this assignment in any public open forum other than the ones specified for this course in Blackboard (e.g.

Ask the Instructor or Student Lounge). Also, note that pay for websites for programming solutions are not an
acceptable method for completing this assignment. If you have a question, don’t sit on it for too long; ask me in the

Ask the Instructor forum or via e-mail. I am also available by appointment via Blackboard IM.

This assignment weighs 15% of your final course grade. When submitting your work, be sure to Zip up all
source code files and documentation (if any) into a single file.

Implementation (20 points)

TrainSchedule.com has contracted you to implement a light rail scheduling system. The company will consider your

program as a proof-of-concept prototype for future work on a larger system. The program will provide a simple text
based interface that will allow the user to enter attributes associated with a given train schedule. The program will

manage these attributes in an object, which will consist of an individual node within a single linked list stored in
memory. The linked list can be a global variable for simplicity, as done in the Book Inventory sample program. The

program must use the “list” API in the C++ standard template library (STL). The program must implement at least

one class that will hold the following variables (input validation is only required where indicated):

2

 scheduleId —

An integer variable to hold the schedule identifier. This must be a

randomly generated 10-digit number. The scheduleId is a unique
identifier for each train schedule in the linked list and repeats are not
allowed.

 scheduleDate - A string variable to hold the date that the schedule will take effect.
The date must be in the form mm/dd/yyyy. Where mm is the two-

digit month, dd is the two-digit day, and yyyy is a four-digit year.

Input Validation Required: The program must re-prompt the user to
re-enter the date if it is not the valid format provided above.

 scheduleDays –

An integer variable to hold the number of days that the schedule will

be valid.

Input Validation Required: The program must re-prompt the user to
re-enter the number if it is not greater than 0.

 trainNumber –

An integer variable to hold the train number.

 originStation — A string variable to hold the name of the station of origin. Note that

spaces must be allowed in the string.

 origDepartureTime – A string variable that will hold the time that the train will depart from

the station of origin. This variable must be in the form HHMM,

where HH is a number from 00-23 and MM is a number from 00-
59.

Input Validation Required: The program must re-prompt the user to
re-enter the time if it is not the valid format provided above.

 destinationStation — A string variable to hold the name of the destination station. Note
that spaces must be allowed in the string.

 arrivalTime –

A string variable that will hold the time that the train will arrive that
the destination station. Input validation is recommended but is not

required. This variable should be in the form HHMM.

 departureTime – A string variable that will hold the time that the train will depart from

the station. Again, input validation is recommended but not required
here. This variable should be in the form HHMM.

Provide the appropriate methods to set and get the data for each of these class variables. For example

setScheduleDate(string scheduleDate) and string getScheduleDate(). The Book Inventory provides an
example on how this can be done. In addition, the main program must provide the following functionality:

1. When the program is first started, it must read a data file called schedule.dat. The program will not

prompt the user for the name of the data file. The name of the file must be hard-coded in the program.

If the file exists, the program will load the data for each schedule into the global linked list. If the file
does not exist, the program will start with an empty linked list.

2. The program will provide a simple text-based user interface that manages the all of the train schedules
within a linked list. Each schedule must be placed in the linked list as an object that holds all of the

attributes associated with it as mentioned above. The user interface will allow the user to perform the
following:

3

(a) Enter Schedule – allows the user to enter all of the fields associated with a given train schedule,

except for the scheduleId, which will be automatically generated by the program as previously
mentioned. After the fields are entered, the program will place the schedule object in the global

linked list.

(b) Display all Schedules – displays all of the schedules within the linked list along with their

associated fields. In addition, this option must print the total number of schedules in the linked
list.

(c) Search for Schedule – allows the user to find a schedule by its schedule identifier. The program

will prompt the user to enter the scheduleId and will display all of the fields associated with
the given schedule, if it is found. The program must display an error message if the schedule is

not found in the linked list.

(d) Edit Schedule – allows the user to edit the fields for a given schedule that is in the linked list.

The program must prompt the user to enter the scheduleId as the key to find the schedule to
edit. Print a message if the schedule is not found in the linked list. For simplicity, the program

may re-prompt the user to re-enter all of the fields associated with the given schedule; however,

it must reuse the scheduleId value.

(e) Delete Schedule – allows the user to delete a schedule from the linked list using the scheduleId

as the key. The program must display a message if the provided scheduleId does not find an

associated schedule in the linked list.

(f) Exit System – before the program exits, it must save all of the data in the linked list to the data
file. I recommend using a standard text file with one field in the object per line. At this point,

if the file does not exist, the program will create it.

Hints and Tips

The Book Inventory program provides a good place to start and I recommend using it as a model. It provides a
simple text based interface, shows how to create a class, and how to use the C++ STL library’s linked list API for

adding and displaying items in a linked list. You should rename its files, the class, and methods as a starting point
for your program.

Start by breaking the program down into small pieces. First, work on the feature that allows you to enter a schedule
along with all of its fields. Next, work on the display feature that will show all of the schedules and their associated

fields contained within the linked list. Next, make sure your program can read and write one schedule and its fields
to and from the data file. Then expand the program to read and write all of the schedules to and from the data file.

The data file functions for this can be modeled after those in File Operations sample program, and the display and

enter functions that you will create. Finally, work on the search, modify, and delete features. Be sure to review the
sample code in the Sample Programs (for Project 2) section in the Learning Activities area in Blackboard.

There are no tricks or special techniques required for this assignment. Everything you need to successfully
create this program is available in the provided sample code.

Other Comments

Please do not hesitate to let me know if you have questions in the Ask the Instructor forum or via e-mail. I also
encourage you to discuss this project among yourselves in the Student Lounge area.

